
How To
 Solution for

Salesforce

Evaluate A
DevOps

In this article, we’ll point out some important areas
to consider and questions to ask when evaluating
which DevOps tools is right for you, in hopes to
provide a solid foundation for your search.

Evaluating which DevOps solution is right for your
organization is an important process that can affect
productivity, data security, production costs, team
morale and more. And because there are many
solutions on the market to choose from, comparing
and contrasting them all can become quite
overwhelming.

Introduction

Is the Solution really “native” to Salesforce?

Solutions that are built specifically for the force.com
platform are able to handle its unique requirements easily
(for example the processing of lightning components and
static resources) and generally have the most robust

security because data never leaves the platform. However,
this is also a tricky area, because some solutions out there
claim to be native, but in fact are built on third party
platforms that just happen to be owned by Salesforce.

All vendors will tell you their solution is secure, however it is up to
you to determine if this is true. When conducting your search, we
suggest looking at security first - taking a close look at each
solution’s architecture and completing any security screens
needed before diving deeper into the .
You will find this helps you very quickly narrow your search and

features and functionality

prevents you from wasting time evaluating tools that in the end do
not meet your needs. Furthermore, installing an insecure solution
even just for a trial essentially exposes all of your data. Some
important
security are:

questions to consider when evaluating a solution’s

Security

Does the tool require backdoor access to your
production org? Do you need to whitelist IP
addresses in order for the tool to perform?

While many DevOps tools claim to be “secure,” their architecture is
built in such a way that they require backdoor access to the
production org to function. Whitelisting an address is essentially
like giving someone the key through your firewall and into all your
internal business functions. In fact, it is Salesforce’s security best
practices documentation actually suggests that you shutdown all
the IP addresses and marketing access to any other vendor.

Will the Vendor have access to your data?

It is a common misconception that DevOps tools only move code
and meta data and therefore won’t have access to your data. In
actuality, - and if
they are built on AWS or Heroku, this becomes a a huge security
risk.

all solutions migrate data in one form or another

Are there any industry regulations
that need to be met? If so can the
tool provide them?

Healthcare institutions, government agencies,
financial organizations, or any kind of company
that stores any kind of personal customer
information need to pay special attention to their
specific rules and requirements. Common
certifications needed in healthcare for example
include PCI and HIPAA. These types of institutions
will not be able to utilize a dev ops tool that runs
on AWS or Heroku because of their requirements.

What are your data residency requirements?

Many organizations, and even some countries have very strict data
residency requirements. In Canada and Singapore for example, it is
illegal for data to leave the country. And because many DevOps tools are
hosted on AWS or Heroku who utilize offshore resources, this presents
an inherent conflict.

Who will have access to your data?

The personnel accessing customer data at Salesforce are all located in
the United States and properly vetted and undergo extensive
background checks. However, many DevOps tools utilize AWS or
Heroku, which do not maintain same standards and are often offshore.
If any part of the tool is outside of Salesforce, know there is a risk it may
end up in wrong hands.

Compliance & Attestations

Does the tool require backdoor access to your
production org? Do you need to whitelist IP
addresses in order for the tool to perform?

Salesforce application development and testing is a multifaceted
process and traditionally many tools were used to cover different
aspects such as environment management, data migration, conflict
management, code repository, regression testing etc. However,
because these solutions are separate and essentially “duct taped”
together they are sometimes inefficient and incompatible.

Furthermore, the force.com platform is very unique in terms of
architecture. It is completely cloud based and rather than
developers writing code on their desktop and then committing it to
Git, all development takes place directly in the development
sandbox. And while certain tools are built to compliment this
unique architecture, covering the entire process, some are meant
for other types of development and cannot handle these unique
needs. When evaluating which release management tool(s) are
right for your process it is helpful to consider the following:

Technology

• How many tools will be needed to complete my DevOps Cycle?

For example, if I go with this Release Management tool will I
need a separate Version Control Solution or Merge Editor?

• What is the added cost of a multiple tool set vs. an all-in-one

solution?

• Are these tools able to easily integrate with each other?
• How much training is required for your team to be able to utilize

all of these separate tools?

While some DevOps tools provide an all-in-one solution to release management,
some companies may still prefer to utilize outside tools. Popular examples include
Git, Jira, Provar etc. Make sure to evaluate if any tools need to be used in conjunction,
and if this is a possibility with the tool you are considering.

Does the solution with preferred tools?integrate

Extendability & Customization

Is the tool extendable?

Each organization is unique in the way their DevOps
environment functions, and each has their own set of rules
that govern their procedures. For example, one organization
may only deploy changes into production on Fridays between
5-7pm, while another can only deploy certain components
into production. It is important to determine if the tool you
are looking at can accommodate those types of needs.

What is the level of expertise required to
make customizations to the tool?

Solutions which are built on AWS or Heroku cannot be
customized directly by users because they are written behind
the scenes on the java platform. Some cannot be customized
at all.

What is the cost to make customizations?

Be sure to note if any customizations needed are included
with the list price or if you will be charged for them separately.

Solution Usability & Ease of Adoption

Is the solution easy to use for all
team members? Is knowledge of Git
required?

A DevOps tool should be useful for the entire
team. Most development teams include citizen
developers who are able to make declarative
changes, but are non-technical in nature. These
users cannot commit their changes to Git or utilize
many of the Git based functionalities. Not only
does this end up creating more work, but also
leads to team members overwriting each other’s
changes. Furthermore, if your team utilizes
external consultants, it is important to find a
solution that allows for quick adaptation, as these
team members are often coming and going.

Does the solution support the size of

your development team?

Because of the limitations of some tools, they are not scalable to
enterprise level organizations. If you are part of a large organization,
make sure to ask about the solutions scalability and how their solution
caters to large development teams.

Is the User Interface user friendly?

When evaluating a solution it is a good idea to take a close look at the
User Interface. Some solutions have built their own, while some utilize
Salesforce’s UI. Because all team members utilize Salesforce it is
generally an easy transition, while custom built UI’s can become more
difficult to navigate.

Specific Functionality to Consider
There are certain areas within the DevOps world that have
historically caused major pain points for development teams.

 How does the tool handle these problems? How
complicated is the strategy? How many steps are involved? How
long does it take to complete?

When evaluating the last few tools that are on your list, we suggest
doing a trial of each one and paying careful attention to these
areas.

Following is the list of areas we suggest considering.

Does the solution provide a merge editor?→

How tedious is it to merge branches? How many steps are

involved?

→

Must the conflicts be resolved manually?→

Can the solution do declarative changes - for example

can it merge lightning components, static resources and

Auradefinition bundles? If so, how?

→

Branching Strategy

Merging conflicts can be an extremely painstaking and time

consuming process for developers, and

. Here are some helpful questions to consider

when evaluating a tools merge functionality:

many tools cannot handle

the merge of many of the declarative components that Salesforce

utilize such as lightning components, static resources and aura

definition bundles

Keeping branches in synch is another painstaking and time

consuming process for developers. Here are some helpful

questions to consider when evaluating a tools merge functionality:

→ How much time is required for your team to maintain the

branching strategy?

→ What happens if the branches are out of synch? How long

will it take to re-synch the branches?

How many environments must be maintained in order to

keep code in synch?

→

How many merges/syncs are required to move code from

the developer’s sandbox from QA to UAT to production?

→

Merging Conflicts

Sandbox Synching
Development sandboxes need to be in sync with what is in
production so that developers can work on the latest code.
Consider the following:

→ Does the tool you’re evaluating provide a solution for this?

→ What is the process like?

There are times when developers may want to deploy their
commits out of synch. Say for example a developer is has
commits 5 - 8, but only wants to deploy commit 6 & 7. Some
tools branching strategies will support this, others will not.

Out of Sequence Deployments → Does your data move to a third party platform when migrated?

(As we mentioned before, any solutions that offer Data
Migration actually move the data from your production org and
into the third party platform they are hosted on and then back
into the desired target org, which presents a huge security risk).

→ Can the solution scramble and mask migrating data for added

security?

→ What is the process like? Are hierarchical relationships
maintained?

→ Does this solution include a tool to migrate data?

The process of migrating data downstream from the production
org into sandboxes or upstream is a necessary process for
Salesforce developers.

Data Migrator

This allows developers to work with actual data to test their code

functionality. And while some tools offer data migration, they do
not maintain , which
makes the process extremely painstaking. Consider the following:

hierarchical relationships when moving it

→ What does the solution’s support model look like?

→ What is the implementation and training process?

Is this included when we purchase the product or is there a
separate fee?

→ What are the hours which I will be able to reach the support
team?

→ Will we have a dedicated support person for our

team to guarantee our success?

DevOps tools vary greatly in the .
While some tools have 24x7 support, others are limited to certain
hours in certain countries.

Some are “self-serve” and do not offer live support at all. It is
important to know what this looks like when evaluating a tool.

Here are some questions to consider:

amount of service thatis provided

→ How often will the solution check in to make sure we are
successful?

Implementation & Support

Cost

Cost is when evaluating any solution for any
business. When evaluating this area, be sure to consider the
following:

always a factor

What is my total cost of ownership for the tool?

Think not only of the solution and licensing, but be sure to
consider maintenance, training, server hosting etc. as well.

→

What is included in my purchase? Are there hidden fees? Do I
have to pay extra for provisioning of licenses, implementation,
support, customization etc.?

→

How many functions does this tool provide?→

How will this tool impact the cost of business - Will I save
money in increased developer productivity? Will it help reduce
my compliance cost?

→

What is the maintenance cost? total cost of ownership-licensing,
training, server, hosting?

→

If I need to purchase multiple tools what is the cost of them
added together vs. an all-in-one solution?) If solution(s) require
Git, what will be the cost to train the entire team on Git?

→

Extendability & Customization

Is the tool extendable?

Each organization is unique in the way their DevOps
environment functions, and each has their own set of rules
that govern their procedures. For example, one organization
may only deploy changes into production on Fridays between
5-7pm, while another can only deploy certain components
into production. It is important to determine if the tool you
are looking at can accommodate those types of needs.

What is the level of expertise required to
make customizations to the tool?

Solutions which are built on AWS or Heroku cannot be
customized directly by users because they are written behind
the scenes on the java platform. Some cannot be customized
at all.

What is the cost to make customizations?

Be sure to note if any customizations needed are included
with the list price or if you will be charged for them separately.

Does the tool require backdoor access to your
production org? Do you need to whitelist IP
addresses in order for the tool to perform?

Salesforce application development and testing is a multifaceted
process and traditionally many tools were used to cover different
aspects such as environment management, data migration, conflict
management, code repository, regression testing etc. However,
because these solutions are separate and essentially “duct taped”
together they are sometimes inefficient and incompatible.

Furthermore, the force.com platform is very unique in terms of
architecture.

 And while certain tools are built to compliment this
unique architecture, covering the entire process, some are meant
for other types of development and cannot handle these unique
needs. When evaluating which release management tool(s) are
right for your process it is helpful to consider the following:

It is completely cloud based and rather than
developers writing code on their desktop and then committing it to
Git, all development takes place directly in the development
sandbox.

Technology

How many tools will be needed to complete my DevOps Cycle?
For example, if I go with this Release Management tool will I
need a separate Version Control Solution or Merge Editor?

→

Are these tools able to easily integrate with each other?→

What is the added cost of a multiple tool set vs. an all-in-one

solution?

→

How much training is required for your team to be able to
utilize all of these separate tools?

→

